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Abstract: United States legislation requires the US Environmental Protection Agency to ensure that pesticide use does not cause
unreasonable adverse effects on the environment, including species listed under the Endangered Species Act (ESA; hereafter referred to
as listed species). Despite a long history of population models used in conservation biology and resource management and a 2013 report
from the US National Research Council recommending their use, application of population models for pesticide risk assessments under
the ESA has been minimal. The pertinent literature published from 2004 to 2014 was reviewed to explore the availability of population
models and their frequency of use in listed species risk assessments. The models were categorized in terms of structure, taxonomic
coverage, purpose, inputs and outputs, and whether the models included density dependence, stochasticity, or risk estimates, or were
spatially explicit. Despite the widespread availability of models and an extensive literature documenting their use in other management
contexts, only 2 of the approximately 400 studies reviewed used population models to assess the risks of pesticides to listed species.
This result suggests that there is an untapped potential to adapt existing models for pesticide risk assessments under the ESA, but also
that there are some challenges to do so for listed species. Key conclusions from the analysis are summarized, and priorities are
recommended for future work to increase the usefulness of population models as tools for pesticide risk assessments. Environ Toxicol

Chem 2016;9999:1-10. # 2016 SETAC

Keywords: Ecological risk assessment

INTRODUCTION

The US Endangered Species Act (ESA) was created to
prevent the extinction of species and to allow species to recover
fo nonthreatened and/or endangered status [1]. The ESA is
administered by the US Fish and Wildlife Service and the
National Marine Fisheries Service, collectively called the
Services. Currently close to 1600 species are listed as threatened
or endangered in the United States, and over 2200 species are
listed worldwide on the US Fish and Wildlife Service website.
Overharvesting, habitat destruction, climate change, disease,
invasivespecies, and pollution,among other factors, are believed
to contribute to species declinesand extinctions. Underthe ESA,
all federal agencies are required to ensure that their actions are
not likely to jeopardize the continued existence of listed species
or result in the destruction or adverse modification of critical
habitat. For example, under the Federal Insecticide, Fungicide,
and Rodenticide Act, the US Environmental Protection Agency
(USEPA) is responsible for ensuring that registered pesticide use
does not cause unreasonableadverse effects on the environment,
including listed species and their critical habitats. Differences in
the methods used by the USEPA and the Services to assess risk
have contributed to lack of consensus on the risks posed by
pesticides in some consultations for listed species.

Inresponseto arequest fromthe USEPA, the Services,and the
US Departmentof Agricultureto review the different assessment
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approaches, the National Research Council [2] recommended
that a single common approach, based on the USEPA’s well-
established ecological risk assessment paradigm [3], be used
acrossagencies. Ina 3-step process, species of concernshouldbe
identified, with the first step based on simple estimates and
conservative assumptions to screen out low-risk species from
furtherconsideration(i.e.,to reacha “no-effect” determinationby
the USEPA). The next steps should become progressively more
realistic, to determine risk for the remaining species and their
habitats (i.e., step 2 would be used to reach a “not likely to
adversely affect or likely to adversely affect decision” by the
USEPA in consultation with the Services; and step 3 would be
used to make a jeopardy decision by the Services).

A key conclusion of the National Research Council report
was that population models are necessary to integrate effects
of pesticides on survival and reproduction, to make jeopardy
decisionsfor listed species. Thisisimportantbecause itencourages
the USEPA and the Services to use a common approach for
assessing risk, and it signals that risk assessments conducted

undertheESAneedtobecloselyalignedwithpreiectiong

which are populations and species rather than individuals. In
the present review population models are defined as mathemat-
ical or simulation models that make quantitative linkages
between organism-level processes (eg., survival, growth,
reproduction, behavior) and population-level properties (e.g.,
population size, population growth rate, age/stage structure).

POPULATION MODELS AS TOOLS FOR ASSESSING RISK

Population models can be particularly useful for risk
assessment under the ESA because they can integrate potential
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effects of exposure to pesticides on individual survival,
reproduction, and growth, with relevant species-specific life
history to project likely consequences for population persis-
tence. Consequences for persistence can be assessed across
larger spatial and temporal scales than is possible through field
and laboratory studies. Population models are also useful for
quantifying indirect impacts of pesticides (e.g., effects on
supporting food webs of listed species). The National Research
Council [2] concluded that population models are an appropriate
framework for incorporating baseline conditions and projecting
future cumulative effects into a risk assessment, both of which
are important in a species jeopardy determination.

The National Research Council report stopped short of
providing specific guidance on the application of population
models. Although population models have a long history of use
in conservation biology and resource management, their use in
chemical risk assessments has been limited [4]. To gain a better
understanding of population modeling and its potential role in
assessingecologicalrisks of pesticidesto listed species, CropLife
America sponsored a science forum in April 2014 that brought
together a diverse group of stakeholders with expertise in
populationmodeling and/or assessing risks of pesticides o listed
species. Theoutcomeof the forumwas a list of recommendations
intended to assist government agencies in implementing
population modeling in listed species assessments and to guide
future research [5]. One of the recommendations for immediate
action was a comprehensive review of existing population
modelsto identify availablemodels that could be used directly, or
with minor modifications, in listed species pesticide risk
assessments. Building on other reviews of the use of ecological
models in risk assessment [6-9], we conducted such a literature
review to fulfill 6 aims: 1) identify existing population models
that have already been applied to assess risks of pesticides to
listed species; 2) identify additional population models that have
been used in other contexts that could provide useful approaches
and/or data for listed species risk assessments; 3) categorize
the models in terms of their coverage, structure, and processes
included; 4) assess potential obstacles to using population
models generally in ecological risk assessments and specifically
for listed species pesticide risk assessments; 5) provide a
database of published models that could be evaluated for use in
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pesticide risk assessments for listed species; and 6) recommend
priorities for future work to increase the usefulness of population
models as tools for pesticide risk assessments.

Recent scientific opinions coming out of the European Food
Safety Authority [10-12] and European Commission [13]
suggest that population modeling is likely to play an increasing
role in chemical risk assessments in Europe. Whereas our
primary aim was to make recommendations that can assist with
implementation of population modeling under the Federal
Insecticide, Fungicide, and Rodenticide Act and the ESA, we
believe that our findings are of relevance for risk assessments
conducted under European legislation as well.

STRATEGY FOR THE LITERATURE REVIEW

We searched peer-reviewed English-language literature
published during 2004 to 2014, using Web of Science, Google
Scholar, and Scopus. We chose to focuson this period of research
to reflect new developments since the publication of previous
reviews on ecological models and their potential use in risk
assessment [6-9]. We excluded gray literature because it may
not be accessible for a wide audience, and because it is often
not subject to independent peer review. Keywords included
“population model” or “model”, combined with “conservation”,
“endangered species”, “risk assessment’, “ecotoxicology”,
“pesticide”, “indirect effects” or “cumulative effects”. Included
in the review were population models that assess risks of
pesticidesor other stressors to nonthreatenedand nonendangered
species, as well as species listed under the ESA as threatened or
endangered. We did not include models that assess only pesticide
exposure or models that predict effects at the level of the
individual only. We also did not consider empirical approaches
(i.e., population monitoring) to assess risk of decline, nor did we
include any studies dealing purely with statistical modeling and
analysisofpopulation data. Instead, our focuswas onmechanistic
effects models as defined by Preuss et al. [14] that produced
outputs at the population level.

We summarized the characteristics of all models meeting the
above criteria in a number of ways (Table 1).

We reviewed the models according to the level of structure
represented in the population (Table 2). Scalar or unstructured

Table 1. Criteria used to categorize the models reviewed

Criterion Options

Model type Unstructured/scalar, matrix, individual-based model, other

Species Latin name (common name)

Taxonomic group Mammal, bird, fish, amphibian, reptile, aquatic invertebrate, terrestrial invertebrate, aquatic plant, terrestrial plant, generic
Species status US listed (threatened or endangered, as of 17 August 2015), US not listed; harvested, invasive, pest, rare/protected, other

Stressors included

Biological processes modeled
(model inputs)

Model outputs (at the
population level or above)

Risk estimates

Model application

Chemical (pesticide, other organic/metal),physical (e.g., climatechange, habitat loss), biological (e.g., predation, disease), harvest
Life history, energetics, physiological process, movement/dispersal, behavior, population growth rate (scalar models only)

Biomeass, abundance/density, structure, spatial distribution, population growth rate

Probability of recovery/decline/extinction; time to recovery/decline/extinction
1%listed species AND pesticide; 2%4listed species AND other organics/metals; 3 Y listed species and nonchemical stressor;

4Y4not listed species and pesticide; 5%4not listed species and other organics/metals; 6 Vanot listed species and nonchemical

stressor

Sensitivity/elasticity analysis  Yes or no

performed
Density dependence included
Stochasticity included
Time horizon of model
Spatial scale
Validation of model outputs
Exposure—effects link
Source Citation (author, year)

Yes (imposed, emergent) or no
Yes or no

Field data, laboratory data, not validated

None, up to 1yr; up to 10yr; up to 100yr; >100yr
Not spatially explicit; up to 1m? up to 1ha; up to 10ha; >10ha

Explicit (dose-response, toxicokinetic-toxicodynamic, etc.), implicit (hypothetical, probabilistic), not applicable
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Table 2. Examples of population model types used in the present review®

Reference examples

Model type Generality Realism Accuracy Definition for listed species
Unstructured/scalar High Low Low Differential equation formulations of total population abundance or [70-73]
density
Age-structured or Medium Medium Medium Matrix algebra formulations with discrete cohorts defined by age or [17,74-76]
stage-structured matrix ~ to high to high life stage (e.g., egg, larva, pupa; or egg, juvenile, aduit)
Individual-based model Low High High Computer simulation in discrete time steps with algebraic or [66,77-79]

rule-based expressions for the behavior and life history of a finite
collection of individual organisms that interact with each other
and their environment

Scores for generality, realism, and accuracy are from Munns et al. [80].

models do not explicitly represent demographic differences
among individuals or cohorts; these are formulated as
differential or difference equations. Matrix models explicitly
consider population structure, but only to a certain extent by
representing distinct age, stage, and size classes, with no further
distinction among individuals in each class being made. This
class of models includes Leslie and Lefkovitch matrices, and
is often the core modeling approach in population viability
analyses. Models explicitly representing individuals as discrete
entities are individual-based models, in which population
features typically emerge as a result of individual interactions,
both intraspecifically and with environmental factors.

We further evaluated the types of stressors that were
modeled, because many modeling studies were conducted for
conservation or harvest management purposes. In addition,
many listed species are exposed to nonchemical stressors (e.g.,
loss of habitat and overharvesting), which may influence how
chemicals impact their populations. Whether or not density
dependence was included in each model was also documented,
because most natural populations are regulated in some way.
We specifically looked fo see whether density dependence on
traits such as growth, reproduction, or survival was imposed
by the use of some generic function such as implementing a
population ceiling, or whether it was allowed to emerge from
individual interactions and resource competition. We also
tracked whether the models were stochastic, because stochas-
ticity may reflect variation in ecological systems. We examined
whether model outputs had been tested against independent
data (i.e., not those data used for model calibration), which
is especially relevant for risk assessment and decision-making,
because modelsare required to represent speciesand populations
of interest sufficiently well. Finally, we classified the models
according fo their published application, because we were
specifically looking to quantify how many published modeling
studies have already been used for pesticide risk assessment
of listed species.

RESULTS OF THE LITERATURE REVIEW

The literature search, applying our keywords and criteria
defined above, resulted in 403 relevant studies that we reviewed
in detail (see the Supplemental Data). In summarizing the
characteristics of the reports, it should be noted that the same
study could be listed more than once (e.g., if the same study
included more than 1 madel type, multiple species, or multiple
stressors). Of the 403 studies represented in our analysis, the
vast majority (66%) used matrix models; 15% used individual-
based models; 12% used other types of structured models; 6%
used unstructured models (e.g., differential equation models);
and 1% included more than 1 model type. Of the 440 species that
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were represented in the models, 23% were US listed species;
33% were nonlisted US species; 22% were species that are
considered rare or protected in other jurisdictions; 5% were
harvested species; 6% were pest/invasive species; and 11%
were species not falling into any of these categories.

Terrestrial plants (dicots, monocots, and nonangiosperms
combined), mammals, and birds were the most modeled
taxonomic groups, followed by fish, aquatic inveriebrates,
and terrestrial invertebrates. There were relatively few models
of amphibians and reptiles and only 2 models of aquatic plants
[15,16] (Figure 1A).

In Figure 1B, we present the number of models including
different stressors. Of the 403 studies included in our analysis,
9% included pesticides as stressors, and another 10% assessed
the effects of other chemical stressors. A total of 38% of the
studies were focused on effects of physical stressors (such as
habitat loss), another 6% considered biological stressors, 9%
modeled the effects of harvest, and 19% considered effects of
multiple types of stressors. In 9% of the studies, either the
stressor was unknown or theoretical, or there was no explicit
inclusion of stressor impacts. Of the 108 studies including
some kind of chemical stressor, 36 (33%) used a dose—response
function to model the chemical effects; 19 (18%) represented
the effects using a mechanistic exposure—effect model such as
TKTD or DEBtox; and 13 (12%) used empirical laboratory data
(i.e., modeling only the concentrations and effects that were
tested in the laboratory experiments). In 36 of the studies (33%),
chemical effects were modeled implicitly (i.e., by considering
hypothetical impacts on vital rates), and 4 (4%) studies did not
report a chemical effect (see the Supplemental Data).

Life-history information, movement (dispersal and migra-
tion), and physiological processes were the most represented
biological processes included as input variables in the reviewed
models (Figure 2A). Some measure of population abundance
or density (48% of the model outputs) and population growth
rate (33% of model outputs) were by far the most common
model outputs, with population structure and spatial distribution
also represented (9% and 4% of the outputs, respectively;
Figure 2B). It should be noted that unstructured models
sometimes used population growth rate as an input variable,
whereas for all other classes of models population growth
rate was an output variable. Fifty-seven percent of the studies
included explicit risk estimates, the most common being
probability of extinction, decline, persistence and time to
extinction, decline and/or recovery. Fifty-three percent of the
studies included density dependence, 71% included stochas-
ticity, and 46% were spatially explicit. Furthermore, 257 of the
403 studies (67%) included sensitivity analyses, whereas only
82 (20%) included some form of partial or comprehensive
model validation (data not shown).
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Figure 1. Representation of taxaand stressors included in our model review. (A) Number of species distributed across taxonomic groups. (B) Number of models
including different types of stressors (of the 78 studies containing multiple stressors, 31 included chemicals: 21 pesticidesand 10 other chemicals). Becausesome
models included multiple taxa and/or multiple stressors, the totals are greater than the number of studies reviewed.

We found only 2 studies published in the peer-reviewed
literature during the last decade that used population models
to assess the risks of pesticides to listed species, and both of
these were for salmon (Figure 3). Baldwinet al. [17] assessed the
impacts of organophosphate and carbamate insecticides on
ocean-type Chinook salmon (Oncorhynchus tshawytscha).
Macneale et al. [18] modified the model of Baldwin et al. [17]

A) Model inputs
377

25

13 13
: L wom B
Life history  Movement/ Physiological Energetics  Behavior Pgr Cther
dispersal  processes
B) Model outputs
283

52

10
b

Biomass Other

Abundance/ Pgr Structure Spatiat
density distribution

Figure 2. The reviewed studies clessified by (A) model inputs and (B)
model outputs. The majority of models assessed multiple processes (i.e.,
input variables) and predicted muitiple outputs, resulting in a total greater
than the actual number of studies reviewed. Population growth rate was only
used as an input variable in scalar models; in all other model types,
population growth rate was an output variable. Pgr Vapopulation growth
rate.
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{o assess the importance of direct versus food-web-mediated
impacts of these pesticides on the species.

We found 7 additional studies that used population models to
assess the risks of other toxic chemicals to listed species and 2
reports that explored the effects of pesticides on species that
have been delisted. Most of these studies were also concerned
with salmonids. In these studies, population models were used
o compare the effects of stress from chemicals for different life
histories as observed in salmonids or other fish species. The
toxicants were often modeled hypothetically (i.e., by simulating
defined reductions in survival rates of each life stage) [19-22].
Mebane and Arthaud [23] and Spromberg and Scholz [24]
explored the effects on 1 life stage (growth of juveniles) and
mortality of prespawning adult salmon, respectively, for
population-level responses. Three more studies addressed
impacts of chemical exposures on birds. Finkelstein et al.
[25] modeled the effects of lead poisoning on recovery of
the listed California condor (Gymnogyps californianus). The
delisted Peregrine falcon (Falco peregrinus) was addressed in

Model application

94
56
43
T SR T T T !

T&E + T&E + other T&E + non- Not listed + Not listed + Not listed +
pesticide org/metals  chem pesticide other  non-chem
stressor org/metals  stressor

Figure 3. Number of models reviewed according to the application for
which they were used in the original publication. T &E Yathreatened and
endangered.
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2 publications [26,27]. In both studies, population responses to
DDT exposure were assessed. All 9 of the above studies used a
matrix modeling approach, none were spatially explicit, 7 of
the 9 imposed density dependence, and 2 of the 9 included
stochasticity.

Despite the paucity of population models including both
listed species and toxic chemicals, there were many more
models that included one or the other. We found a total of
94 publications describing population models of listed species
(but not chemical stressors; plus the 2 studies for delisted
species), 57 publications with population models designed
fo test the effects of pesticides on nonlisted species, and 44
publications modeling the effects of other chemicals on
nonlisted species. Some of these studies contain relevant life-
history and other data for listed species that could be highly
valuable for adapting models to explore pesticide effects. Others
may be valuable for providing exposure-response information
for toxic chemicals and species that could provide useful
toxicological surrogates for listed species. In addition, there
were 199 publications in our database containing population
models for nonlisted species and for which the stressor was not
chemical or that did not explicitly explore the effects of a
stressor. These studies provide a good overview of the kinds of
population modeling approaches that have been conducted over
the last decade.

It is apparent from our analysis that there exists a wide
variety of options for population modeling based on different
analytical or simulation techniques, model platforms, and
software. Stage-structured or age-structured matrix models
remain the most common approach to population modeling.
These vary from very simple, deterministic, density-independent
models to more sophisticated, stochastic models that incorporate
various kinds of density dependence. It should be noted that
matrix models project expected population dynamics based on
estimated vital rates (with or without density dependence) [28],
whereas most individual-based models aim to predict vital rates
and consequent population dynamics based on individuals’
interactions with their environment and each other [29]. The
more recent literature has seen an increase in the development
and application of spatially explicit individual-based models.
This is likely because of advances in computational power, as
well as efforts by the modeling community to develop guidance
for developing, testing, and communicating these kinds of
models [30-33]. The major advantages of individual-based
models for pesticide risk assessment are that they interface
well with spatially and temporally varying exposure information
[34], are able to include specific behaviors that affect risk [35],
and can be scaled up to cover large landscapes if necessary [36].
In comparison with matrix models, it is more common for
the outputs of individual-based models to be fested against
independent data (we found validation efforts reported for 10%
of the matrix models, and for 52% of the individual-based
models). Pattern-oriented modeling [30] allows comparison of
multiple individual-based model outputs against independent
data, increasing the possibilities for model testing [29,35-37].
A particularly good example of model validation within the
context of pesticide risk assessment is provided by Wang [38].

Insummary, despite the widespread availability of modeling
approaches and an extensive literature documenting the use
of population models to address either species management
questions or impacts of chemicals on populations, only 2 of
the approximately 400 studies that we reviewed used population
models to assess the risks of pesticides to listed species.
This result suggests that there is an untapped potential to adapt
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already well-developed models for pesticide risk assessments
under the ESA, but also that there are some important obstacles
for developing and using such maodels. Comprehensive life-
history and ecological information on many listed species may
currently limit the development of detailed species-specific
population models for listed species. However, the models that
were applied to listed and unlisted salmonids and other fish
species [17,19-24] show the benefit of relatively simple models
in comparing the vulnerabilities of species with different life-
history traits. This can help in prioritizing species for further
assessment and guide efforts for additional data collection.
Moreover, a key advantage of individual-based models is that
they may be based on principles of fitness maximization by
individual organisms and thus do not necessarily require precise
estimates of life-history traits [39].

LIMITATIONS OF CURRENT EFFECTS ASSESSMENTS AND
IMPLICATIONS FOR POPULATION MODELING

Toxicity data for pesticides are generally only collected
for a handful of test species. Accordingly, toxicity data are
not available for most species, including listed species, which
may potentially be exposed fo a pesticide. There are established
methods for interspecies extrapolation of toxicity data from
standard test species to untested species [40,41]. However,
tfoxicological data are often not measured in a way that is
most useful for integrating into population models. As noted
by the National Research Council report, pesticide effects
should be estimated at a range of concentrations that includes
all values that the population might reasonably encounter.
However, test results are often expressed as threshold values or
point estimates—such as the no-observed-effect concentration
(NOEC), the lowest-observed-effect concentration (LOEC),
and the median lethal concentration (LC50}—which do not
provide adequate information for a population-level risk
assessment [2]. This is not a criticism of using models but
rather underlines that if we want to use toxicity data to inform
likely impacts on populations, we ought to be reporting the
data in a way that is useful for assessing population-level
impacts. Notwithstanding the limitations of existing data
packages, when one has a NOEC and an LC50, it is possible
o make some conservative assumptions (i.e., linearly interpo-
late effects between the NOEC and LC50 and assume 100%
effect above the LC50). The point is that these are limitations on
the kind of data collected to conduct risk assessments and not
limitations of population modeling.

Although impilicit in the use of organism-level toxicity data
in effects assessments, it is invalid to assume that responses at
the organism level are directly proportional to responses at
the population level. As a number of reports in our review
demonstrate, the same potential effects (of chemicals and other
stressors) at the organism level can have vastly different
consequencesat the population level indifferent species [22 42].
For example, certain effects of toxicants for a population can
exceed the effects observed in individuals [43], or may be
lower [44]. Potential population-level effects may also change
depending on other factors in the model (e.g., population density
[27]). Different mechanisms lead to variation in population-
level outcomes, such as including variation in life-history
traits [19], combining lethal and sublethal effects [45], density
dependence [46], or temporal and spatial exposure patterns [47].
Population modeling can provide quantitative extrapolation
of organism-level effects to the population level that accounts
for differences in species life history and ecology.
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Population models, whether they are simple, generic
approaches or complex, species-specific models, can be used
to explore the effects of changes in the processes they represent,
including life-history traits, sensitivity to toxicants, exposure
patterns, environmental conditions, and many more. |f data gaps
exist, population models can yield insights into the importance
of the processes in the context of a pesticide risk assessment.
The models can also be used to assess the effects of variance in
empirical datasets on population-level responses, and make it
possible to conduct so-called experiments that are virtually
impossible to conduct in the field because of the effort or time
such experiments would take.

In addition to using population models as tools to gain
insight into the effects of uncertainty in empirical data, our
review indicates that methods exist for dealing with data gaps,
and these include allometric estimation of vital rates [48],
Bayesian techniques [49], use of surrogate species ([50]; but
see Spromberg and Birge [19] and Banks et al. [22,51]),
and iteration of unknown parameters based on initial values
of population statistics (e.g., growth rates) [28]. In the present
review it is important to note that gaps in dataand understanding
exist for traditional approachesto risk assessment. Anadvantage
of the models is that they make these gaps explicit, rather than
hiding them behind an assessment or uncertainty factor.

For making quantitative predictions of future population
sizes or growth rates of specific populations in particular
habitats, species-specific models that incorporate substantial
ecological realism may be necessary. For example, factors such
as species distribution (continental vs island endemic) can
influence the kinds of constraints that species face, and these
need to be considered and appropriately captured in the models.
Species-specific life-history and ecological data necessary to
parameterize and evaluate population models can be challeng-
ing to collect [36], and this can be particularly important when
one is attempting to validate very complex, species-specific
models against data representative of field populations of
concern [36,52]. In such situations, comprehensive analysis of
the models is crucial to determining the relative importance
of included factors and processes [53]. This is not only a test for
the reliability of the models [32,33], but also helps to prioritize
future data collection efforts [52], and can inform management
strategies and postmanagement monitoring efforts [54].

SPECIAL CONSIDERATIONS FOR LISTED SPECIES
ASSESSMENTS

A general problem for risk assessments of listed species is
lack of data on toxicological responses, key life-history traits,
and ecological characteristics. There is limited evidence to
suggest that some listed species are toxicologically more
sensitive than nonlisted species [55], and when listed species are
taxonomically distant from taxa for which toxicity data are
available (e.g., corals), more conservative assumptions about
toxicological sensitivity could be made. Even when data are
available, they may be less certain because of small sample
sizes, limited number of studies, and so on. Population models
can help to address these points in various ways. For example,
population models can provide insight into the relative
importance of different biological processes, for instance, the
vulnerability to toxic stress of species dependent on their life-
history traits [19,22,45,51]. Such applications make validation
of population models with field data a lesser concern. Even
simple and fairly generic models can be of great value for the
identification of species of most concern within a taxonomic
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group and for selecting appropriate surrogate species [56]. In
addition, generic (rather than species-specific) approaches can
be used to integrate combined lethal and sublethal effects
on populations [18,45,46,57], and can guide the focus for more
detailed assessments, including more complex population
models, field data collections, or other sources of information.
Moreover, although most decision makers would like to see
models validated by testing their predictions with new experi-
ments or data, this is neither sufficient nor necessary foramodel
to be useful for decision support [33].

In the context of screening out low-risk situations, species-
specific effects thresholds derived from population models
could provide an alternative to extremely conservative general
thresholds based on individual-level effects. For example, a
standard threshold for listed animal species of a 1 in a million
chance of acute mortality based either on the most sensitive
species or on the 5th centile chronic NOEC from a species
sensitivity distribution has been proposed at step 1 of the 3-step
interim process described above to distinguish between “no
effect” and “may effect” [58].

Given the variety of species life histories and differences
in objectives of the different steps of the consultation process,
it is likely there is no 1 best population-level endpoint or
risk expression for assessing population risk. Whereas popula-
tion growth rate is 1 of the most commonly used metrics and
can provide information on likely rates of recovery or decline,
there is some evidence that long-term population size is
more informative, more sensitive for predicting population
performance, and more easily understood and valued by the
public [29]. In some cases exposed populations are predicted
fo stabilize at similar growth rates as unexposed populations
but at a lower population size [59,60], and all else being equal,
smaller population size means a higher risk of extinction
because of demographic and environmental stochasticity and
catastrophic events [61]. Explicit estimates of extinction risk
are intuitively attractive, because they are more relevant to
protection goals; however, they have been shown to be sensitive
to small errors or uncertainties in model parameters [23].
It has therefore been suggested that expected minimum
population size [23], decline in population size relative to
unexposed populations [29], or relative extinction risk among
populations [62] are less sensitive to model uncertainties or
stochastic variability and may therefore be more robust
indicators of population status than expressions of absolute
extinction risk. In addition, the precision of model outputs
is also a key factor to consider when one is using models
for regulatory decisions. Instead of limiting the outputs of
population models to a single endpoint, we recommend analysis
of multiple endpoints (e.g., population growth rate, population
size, and a measure of decline or extinction risk), because the
most sensitive measure may depend on the conditions of the
modeled population.

The National Research Council [2] concluded that density
dependence should be incorporated into population models for
listed species. Density dependence is a prevalent feature of
population dynamics found even in rare species [63] that
has been shown fo interact with effects of chemicals, with
examples of both more-than-additive and less-than-additive
interactions in the literature [64]. Approximately half of the
model approaches reviewed in the present study included
density dependence. Some modeling approaches require that
assumptions about the form of density dependence be imposed
on the model, either by defining population ceilings [65],
by defining specific forms of density dependence impacting
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life-history traits [19,27,59], or by assuming additive impacts
on individual survival [47,54]. In others, density dependence
emerges from intraspecific competition for a limiting re-
source [14,35,66]. Either way, decisions about how to include
density dependence need thoughtful consideration, because
density dependence can interact with chemicals in different
ways, with contrasting consequences for population persistence.
The present review suggests that, in some cases, density
dependence is likely to reduce the impacts of low exposures
fo pesticides (and other stressors) at the population level
[19,27,65]. Removal of organisms releases the rest of the
population from competition, and a subsequent increase in vital
rates compensates for initial adverse effects of chemicals.
However, in some studies no impacts of density-dependent
regulation on population-level effects of chemicals were
detected [47]. In others, impacts of density dependence were
exacerbated in the presence of chemicals [47,59]. When, for
instance, reproduction is density-dependent and further com-
promised by chemical exposure, impacts at the population
level may exceed what either density dependence or chemicals
had in isolation [59]. In addition, populations exhibiting
pronounced spatial heterogeneity in some aspect of their life
history (e.g., when density of certain life stages is very high
in some parts of the habitat) may also experience magnified
impacts of chemicals in the presence of density-dependent
mechanisms targeting those life stages [47]. To correctly
capture the dynamics of populations exposed to chemicals,
regulating mechanisms need to be carefully considered and
included. Data-driven empirical and mechanistic approaches,
rather than generic functions, may be a more realistic approach
to implementing density-dependent functions into population
models [67].

PRIORITIES FOR FURTHER ACTION

To ensure that model users and assessors understand a
model’s strengths and limitations as well as its domain of
applicability, we recommend that further attention be devoted to
ensuring standard documentation and model evaluation and
that these be included in future guidelines for ESA framework
implementation. Decisions about model assumptions, which
and how processes are represented in the model, model
parameterization, and calibration need to be made based on
available data and knowledge. Comprehensive sensitivity and
uncertainty analyses have to be conducted to assess the
reliability of a model [32,33,68]. Most of the models in our
review (67%, or 257 of the 403 studies reviewed) included
some kind of sensitivity analysis, although the scope of the
analyses varied widely from testing the impact of varying
a single parameter within a small range to a more comprehen-
sive exploration of the parameter space and interactions
between factors. The responsiveness of the model to chemical
and nonchemical stressors should be evaluated (i.e., similar
o a positive control [toxic standard] in laboratory and field
toxicity studies). Ideally, the modeler should also explore the
consequences of leaving out certain factors or processes. If
possible, validation of output with independent data should be
conducted, as was the case for 20% of the studies we reviewed;
it was often not clear whether the data used for the validation
efforts were actually independent of the data sources used
during model development and calibration. This needs to be
made very clear. Rigorous documentation of all steps in model
development and application is essential for the transparency of
any approach. Without documentation, it cannot be determined
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whether amodel is a useful tool in the context of an assessment,
and under which conditions the results of the model are
applicable [32,68]. Case studies can increase confidence in the
reliability and relevance of models, for example, by the use of
multiple modeling approaches for the same species, validation
of models using data-rich nonlisted species, and regular
confirmation of model predictions with field monitoring studies.

Given the large number of listed species, there is a need to
prioritize species for in-depth risk assessments. In our view,
population models can therefore have arole to play inall steps of
the 3-step interagency consultation process described in the
Introduction. Even within a narrow taxonomic group, variations
in life-history traits can result in vastly different population-
level outcomes of organism-level responses to toxic stress
[22,51]. Modeling approaches can be applied to identify the
most vulnerable species within a group by comparing different
life-history types [19,56]. Assessing species groups rather than
individual species may allow focus on a subset of groups and
identification of the most vulnerable species within the groups
for further, detailed assessment. It is currently not feasible to
assess risk to several hundred species 1 by 1 in each risk
assessment. |f a subset of species can be identified as most
vulnerable because of their potential for exposure, life-history
traits, and/or sensitivity to a pesticide, an ecologically relevant
risk assessment can be conducted for those species that is still
protective for all listed species. In addition, there is a pressing
need for guidance on how model! choiceand model development
for pesticide risk assessment should be approached in the light
of data availability and species traits. Major concerns remain
about the lack of ecological and toxicity data for listed species.
Clearly, having some understanding of the factors that have
driven populations of listed species into decline or rarity is
important for assessing risks of further decline or lack of
recovery. There are mixed views on whether and how data from
surrogate species are helpful for model development. Kesler
and Haig [50] argue for using surrogate species fo develop
population models for listed species when data for the latter are
missing. Banks et al. [22,51] and Spromberg and Birge [19]
highlight that care needs to be taken when one is identifying
tfoxicological surrogates because of the importance of life-
history differences on population-level impacts. As mentioned
in the section Limitations of current effects assessments
and implications for population modeling, this is the case for
all species (not just listed species). Thus, the use of surrogate
species is the norm in chemical risk assessments of nonlisted
species and underlines why population models are needed to
integrate toxicological data on individual-level endpoints into
likely impacts on populations as part of the interspecies effects
extrapolation, Given that many listed species lack ecological
and toxicological data, surrogates will undoubtedly need fo be
identified for some species. Species groupings discussed in the
section Special considerations for listed species assessments
and toxicokinetic and/or toxicodynamic modeling [69] could
support identification of surrogates and toxicity extrapola-
tions [40], and more data on the life history and ecology of
listed species are needed to improve modeling results. In the
meantime, the models can be used to quantify the effects of
uncertainties in life-history traits and toxicant sensitivities of
listed species. Knowledge about what factors have driven the
decline of the species in question is especially important for
developing species-specific models to assess whether pesticides
add to the existing risk of further population decline or lack of
recovery. Such knowledge may also aid selection of adequate
surrogate species.
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The studies that we reviewed include examples of simple,
deterministic population models as well as more sophisticated
models that include stochasticity, density dependence, and
spatial and/or temporal variability in exposure and effects. The
degree of complexity that needs to be included in models will
depend on whether realistic effect sizes of population-level
outcomes are needed or whether qualitative assessments of
relative risk or importance of traits are sufficient. Although lack
of data on listed species may initially limit the level of detail that
can be included in models, collecting such data should be a
high priority under the ESA.

In summary, population models can benefit pesticide risk
assessments for listed species at all steps of the process by
providing ecologically informed effects thresholds, identifying
the key drivers of species decline and recovery for more
effective management, assessing the relative vulnerability of
species to pesticides and other stressors, prioritizing species
for model development, integrating effects of pesticides on
lethal and sublethal responses as well as integrating effects of
multiple stressors and indirect effects, exploring population-
level impacts at temporal and spatial scales that are difficult to
assess empirically, and improving the design and reporting of
toxicity tests. The intent of the present review is to assist the
USEPA and the Services with further development and
implementation of population modeling in future ecological
and listed species risk assessments for pesticides. It is beyond
the scope of the present review to answer all questions related
o implementation of population models for risk assessments
of listed species or to provide a detailed decision framework
for integrating models into the existing multistep process.
However, we believe that the insights gained will be useful for
implementing population models in this and other jurisdictions
and applications that extend beyond the ESA and pesticides,
and we hope that the compiled database will provide a useful
resource for further work in this area.
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